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J. Phys. A: Math. Gen., Vol. 11, No. 5 ,  1978. Printed in Great Britain 

LETTER TO THE EDITOR 

Three-dimensional multiple soliton-like solutions of 
non-linear Klein-Gordon equations 

J D Gibbon, N C Freeman and A Davey 
Department of Mathematics, University of Newcastle upon Tyne, Newcastle NE1 7RU, 
UK 

Received 16 March 1978 

Abstract. A method is described which enables multiple three-dimensional soliton-like 
solutions to be found of non-linear Klein-Gordon equations of the type 0 4  = F ( 4 ) .  The 
method is extendable to coupled equations 04 = F(4 ,  $); U$ = G(4, $). 

Non-linear Klein-Gordon equations of the type 

U=--(- a2 a’ a’ 
at2 ax 2 f 7 )  ay 

play a fundamental role as model equations in theoretical physics especially if soliton 
solutions occur. Some important cases are the sine-Gordon equation (F = -sin 4 )  
and the d4 equation (F = 4 which occur in non-linear field theories (Jackiw 
1977; Rajaraman 1975) and lattice dynamics (Schneider and Stolll975). A model for 
the theory of spin waves in liquid He I11 gives the double sine-Gordon equation where 
F = sin 4 +$sin $4 (Caudrey and Bullough 1977). Recently Gibbon et a1 (1978, to be 
referred to as I) showed that a correspondence exists between solutions of the above 
equations and that multiple soliton-like solutions of a restricted type exist. 

It is shown here that there is a very simple yet important geometric significance to 
this correspondence which extends to the whole class of equations given in (1) yielding 
multiple wave solutions. More important still, this geometric property extends to 
coupled equations such as 

We consider surfaces in (x ,  y, t )  space given by g ( x ,  y, t )  = A,  and then 4 is treated as 
depending on the single variable g only. 

The following argument revolves around a result in classical field theory which 
states that if 

o g / ( A g > 2  = M ( g )  (3 1 
where M ( g )  is an arbitrary function of g ,  then such surfaces are equipotential surfaces 
4 = 4 ( g ) .  The A operator acts like the gradient operator (with the appropriate metric) 
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such that A.  A = 0. The simplest choice for Og  and (Ag)' separately suggested by (3) 
is to take 

O g  = A k ) ,  (Ag)2 = B k ) .  (4 ) 

Equation (1) now becomes 

giving 4 = d(g). Although A and B can be general functions of g, equation (5) is not 
integrable as it stands. For the moment, therefore, we shall make the choice A = -g; 
B = -g2 which is appropriate for obtaining simple solutions of (4) and then return 
later to a more general form. Equation ( 5 )  can now be transformed directly into 

where 

o g  = -g, (Ag)' = -g2. (66)  
Note that V is a potential function for the surfaces since O V = O .  Hence, given an 
F(#), as long as ( 6 a )  can be integrated to give 4 = 4(ln g), then solutions in ( x ,  y, t )  
space are determined by solutions of the pair of equations (6b) .  One set of multiple 
wave solutions is 

N 

g = 1 exp di 
i = l  

ei = pix + qiy  - wit + si 
p i  +qi  -wi =1  

( 7 6 )  

( 7 c )  

( 7 4  
Equation ( 7 c )  expresses the mass-energy relation for the ith wave. The restrictions 
given in ( 7 4  show that two 'particles' of unit mass with momentum components 
(wi, p i ,  qi)  and (wj, pi, 4j) give rise to a third with components (wi - wj,  p i  -p i ,  qi - q j )  
which has zero mass. Other solutions of (6b)  were given in I. There are restrictions on 
the number of waves allowed since equations (7c, d )  are overdetermined when N > 5. 

E x a m p l e  1 .  44 equation: F ( 4 )  = i(4 - ~45~).  The well known kink-type solution of (1) 
is 

2 2 2  

with the NC2 conditions on the motion 
2 2 ( p i  - p i )  + (qi - qj)2 - (Oi - W j )  = 0. 

4 = tanh i V  = [(g - l) /(g + l)]. (8) 
E x a m p l e  2. F ( 4 )  = d3 - 4. A solution for boundary conditions 4 + 0; x + km is 

A plot of 4 against x and y (at t = 0) is given in figure 1 for three waves. These 
solutions are not full N soliton solutions in their truest sense since the wavefronts do 
not extend to infinity but they are nevertheless multiple soliton plane wave solutions 
which can interact at different speeds and angles. Results for the double sine-Gordon 
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Figure 1. Plot of 4 against x (continuous) and y (discrete) at f = 0 for three waves: 
p1 = q 1  = U 1  = 1; p 2 =  1, q 2 = - w 2 =  -1; p 3 =  1, q 3 = w 3 = 0 .  

equation were found in I by a heuristic method and will not be repeated here. It is 
possible to generalise ( 5 )  under the assumption that A =$B’. Equation ( 5 )  is still 
integrable and yields a transformation between B(g)  and 4 : 

J B -”~  dg = J (2 J F d+)-’I2 d4.  

However it is then possible to do the same procedure over again and reduce 

Og = $B’, (Ag)2 = B (11a) 

Og’ = -g’ (Ag’)’ = -g” (1 16) 

to the pair given in (66) 

by calculating a transformation g = g(g’) .  
Hence ( 1 )  can be transformed either directly to (66) with V = In g or if necessary 

to some intermediate pair (1 la).  
The great value of this procedure is shown when considering coupled wave 

equations in two scalar variables as in (2). Consider therefore two sets of equipoten- 
tial surfaces g(x ,  y, ?)=A1;  h(x, y ,  t ) =  A 2  with two sets of coupled equations analogous 
to (66) 

o g  = -g, (Ag)2 = -g2;  

Oh = -h, (Ah)2= -h2, 

and (Ag) . ( A h ) =  -gh. 
Following the same procedure which produced (6a) ,  a similar result is obtained. 

Equation (2) becomes 

(a24/a12)€ = -F(+, *I, 
5 = $(VI + V2)  = f In (gh) 

6 = 4( v1 - v2) = f In (g/h 

(a2*/a12)€ = -G(4, *) 
(13) 
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where two potentials VI =In g; V2 = In h have been introduced. The variable 6, 
although redundant in (13), can still reappear as an integration constant. One 
example of this type is 

c14=424-#, (14a) 

U* = **4 - 9. 

OLL = @-a3. (15) 

CP = (exp L)/(I +Q exp 25). 

(146) 

Through the transformations 4 =a@; I,!I = a-’@, (14a, 6)  reduce to 

For solutions which have boundary conditions @ + 0; x + fa, we have 

(16) 
Although the constant a can be any arbitrary function of 6, we shall for convenience 
choose it to be a = exp 6 giving 

4 = g/(l +Qgh), 4 = h/( l  +Qgh). (17) 

Solutions of (17) are interesting since they can display some greater generality than 
(7). One set has the same relationships between the (pi, qi, w i )  as in (7): 

iv M 

i = l  
h = 1 exp ( d i + A ) .  g = exp di, 

i = l  

Note that the phases of the two parts can be different and also g and h do not have to 
have the same number of exponentials. The coupled equations (14u, 6) also contain 
as a special case 4 = 4* ( h  = g*) for complex valued fields. 

As long as the necessary integrals in (13) can be performed, more general coupled 
equations can be solved. If the metric in the d’Alembertian is Euclidean then the 
situation changes and solutions may not exist. For instance Hilbert’s theorem 
(Willmore 1959) does not allow solutions for surfaces which have constant negative 
curvature in three-dimensional Euclidean space. 
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